
Lisbon Account Protocol: Practical Distributed

Externally-Owned Accounts
with Key Resharing and Public Key Encryption with Forward Secrecy

Amira Bouguera, James Bourque

February 22, 2023

Abstract

Decentralized networks such as blockchains rely on asymmetric key-
pairs for external participant addressing, known as externally-owned ac-
counts, or EOAs, and require end-users to safely maintain private keys.
This private key management often becomes a single point of failure for
end-users, and dictates a poor user experience, particularly for a main-
stream audience. As a result, many solutions have been put forward to re-
duce the use or significance of private keys in these networks, including the
use of Smart Contract Accounts for account abstraction, variations of cus-
todial services, or implementing sharing or signature schemes. These so-
lutions, however, often unacceptably compromise on core network values,
such as decentralization, self-custody, or interoperability/composability.

In response, we propose a practical account protocol that is non-custodial,
fully decentralized, non-interactive, and asynchronous. The result of the
protocol is an externally-owned account with no single private key for
use on decentralized networks. The protocol includes three main phases:
distributed key generation, threshold signature formation, and key reshar-
ing. The protocol supports both ECDSA and BLS keypairs, is network-
agnostic, and requires no third party dependencies, or additional data
stored by end-users locally or otherwise. It has been designed for real-
world implementation, and supports many on- and off-chain environments.

Keywords: Secure Multiparty Computation. Threshold Signature Cryp-
tography. Key Resharing. Distributed Key Generation. Verified Secret
Sharing.

Contents

1 Introduction 2
1.1 State of the art . 3

1.1.1 Technology . 4

1

1.1.2 Similar Solutions . 7
1.1.3 Our solution . 9

2 Lisbon Protocol 10
2.1 System Context Overview . 10
2.2 Distributed Key Generation (DKG) 11
2.3 Threshold signature . 13

2.3.1 ECDSA Threshold signatures scheme 14
2.3.2 BLS Threshold signatures scheme 16

2.4 Key Resharing . 17
2.5 Public key encryption with forward secrecy 18

2.5.1 CCA-secure public-key encryption with forward secrecy . 18

3 Threat Model 19
3.1 Malicious behavior . 19
3.2 Man In the Middle . 20
3.3 Key compromise . 20

4 Conclusion 21

5 Appendix 23

1 Introduction

As Web3 continues to evolve, it is storing and securing digital assets of increas-
ing value and complexity. At the outset, blockchain networks’ value was rooted
in simple tokens and smart contracts. Web3 now includes sophisticated finan-
cial protocols such as staking and yield farming, digitally unique assets such
as NFTs, and Digital Identity, all which have much greater financial and social
value than before.
All participation in Web3 requires a cryptographic keypair, however, the means
for storing and utilizing keys have evolved little since the introduction of blockchain
networks. Existing key management solutions fall into three broad categories:

• Original blockchain solutions, such as hardware wallets, mnemonic phrases,
and wallet applications

• Web2 Solutions, such as Hardware Security Modules and centralized, cus-
todial services

• Blockchain Solutions (1st generation), such as vault services or smart-
contract wallets

Each of these solutions have categorical short-comings for high-value accounts
and assets, such as single points-of-failure, dependencies on specialized networks
or hardware, or centralized/custodial services.

2

As the value of individual accounts’ assets increases and network value/lost as-
sets, so does the need for a fully-decentralized key management protocol.

The protocol described in this document addresses many of these existing vul-
nerabilities in a fully decentralized, trustless, network-agnostic way, with the
express purpose of serving as an accessible and democratized solution for the
Web3 community. It solves the single point of failure (private key) by introduc-
ing three key characteristics without cryptographically impacting a static public
address or identifier:

• Decentralized Key Generation across user devices, to minimize hardware
risk

• Distributed ownership and risk, to reduce dependence on a single key

• Account recovery, through both key resharing and interpolation

1.1 State of the art

Our protocol relies on threshold cryptography which allows for both distributed
key generation and signature. Threshold cryptography allows a group of par-
ticipants, identified by externally-owned accounts to hold a key and use it for
signature or encryption. A single individual keyholder cannot recover the key
on their own nor use it for encryption or signature. In order to recover the key,
there must be a minimum number of accounts, a “threshold” number working
together to access the key and use it. However, threshold cryptography isn’t
the only technology allowing for such usage, multisignature schemes allow that
as well.

Another cryptographic method used in our technology, MultiParty Computa-
tion (MPC). The goal of MPC is for a set of parties to jointly compute a function
over their inputs each on a separate device without revealing anything but the
output. MPC has been a topic of research in academia since the 1980s and
has recently become efficient enough to be used in practice. There are many
potential applications where MPC is useful including key generation in a decen-
tralized fashion.
In this section, we will give the current state of the art by comparing threshold
cryptography and MPCs each to similar technologies that solve similar prob-
lems. Threshold signatures to Multisignature schemes and MPC to HSMs with
the goal of identifying both advantages and disadvantages of each and justify our
choice for using these technologies. We will compare key generation and storage
solutions (MPC and HSMs), as well as means of utilizing these keys (Threshold
and Multisignature Schemes) with the goal of identifying advantages for each,
and ultimately justify our design decisions in how we apply these technologies.
We will also examine similar projects and their approaches building in the
blockchain space to identify the strengths and weaknesses of their methodol-
ogy.

3

1.1.1 Technology

MPC vs HSM

Hardware security modules, HSMs, are dedicated computing devices designed
for the safe storage and use of cryptographic keys. HSMs have the ability to
wipe all key material when they detect attempts to interfere with the device
which makes them a good choice for storing private keys. They also allow for
faster decryption and thus more real-time access to assets.
Multi-party computation, MPC, is a software solution, based on cryptographic
protocols, that give the ability to cooperatively compute a function while keep-
ing each participant’s inputs secret without exposing them to other participants.
MPC allows several independent parties to cooperatively share ownership and
use of a cryptographic account in a variety of different environments, without
reduced hardware risk.

Each of these technologies has its advantages and disadvantages and the choice
between both will depend on the use case. HSMs protect against external threats
since authentication takes place inside the module. Also any attempt to tamper
with HSMs leaves a digital trail. However, HSMs have several major drawbacks
including slower transaction time and scalability issues as every client must
have one or more HSMs, this condition makes the protocol harder to scale as
it becomes more expensive to participate. HSMs also have limitations in re-
dundancy and liveness and require physical access for deployment, maintenance
and configuration. A single module can protect only a limited number of keys
and deployment cannot be automated.

MPCs scale better than HSMs as there is no need to have a hardware device to
participate. Key shares remain separate between all the parties and unless the
majority (a threshold that is decided depending on the protocol and the level of
security needed) colludes together the key is never assembled in one place which
means the key stays secure. This is true even when a quorum assembles a key
to make a transaction: the key is never assembled on a single machine. MPCs
allow for m-of-n parties to co-sign transactions which is similar to traditional
multisignature but without the inconvenience of slower and heavy transactions
that comes with multisignature schemes since MPC transactions are smaller,
faster and incur lower on-chain transaction charges.
One of the biggest challenges in MPC technology is the ability to store key
shares securely. The most effective way to do so is by storing keyshares on
HSMs, hence these two technologies are complimentary and not exclusive of
each other. Another challenge which is sometimes seen as a property is the fact
that signers identities stay hidden: this might increase the potential for uneth-
ical collusions, it can also be seen as a privacy property that protects identity
of signers from attackers who try to influence or hack them.

4

Threshold Signature Schemes vs Multisignature

Both schemes enable multiple parties to sign transactions together, either by
using secret shares of one key to produce a single signature (threshold signa-
tures) or by allowing a group of signers (each possessing its own private/publi
key pair) to produce a single signature on a message m and verifying the valid-
ity of that signature against the set of public keys of all signers. Both methods
allow for distributed nature of signature creation but they differ in the following
points:

In TSS (threshold Signature Schemes), signing occurs off-chain and we see a
single-key transaction on chain (the aggregated signature), this is why partic-
ipants’ identities are hidden. On the other hand, Multisignature Schemes use
an on-chain process, which means that the identities of participants are pub-
licly visible on the blockchain. This introduces security risk by exposing the
identities of who is involved in the process. In addition, because Multisignature
transactions happen on-chain, the transaction costs increase as well while in
TSS, the cost is low due to their off-chain nature.

There are two types of multisgnature schemes that we should mention: first
type are multisignature smart contracts: in order to send a transaction from
the contract a majority of signers need to approve it. The second scheme is
based on Schnorr signatures commonly used in Bitcoin, this scheme allows for
combining multiple signatures into one through aggregation, while still produc-
ing a small on-chain size signature with faster validation and better privacy than
the smart contract multisignatures scheme. The problem with both though is
that each one of these schemes necessites each participant to have their own
private key stored in one place and thus the single point of failure problem isn’t
solved.
Threshold signature aggregation for BLS or ECDSA is an example of TSS which
ensures that private keys never exist on a single system at any point in time.
Secret shares are generated independently on each participants’ device and the
signing algorithm uses secret shares in turns, without the need to reconstruct
private keys.

Threshold signature, Key resharing and Rotation

We will focus on the usage of MPC algorithms to compute a digital signature
in a distributed way. This process has three steps: Distributed key generation,
Signing and verification. The two DKG (Distributed Key Generation) proto-
cols mostly used nowadays are the Joint Feldman DKG (JF DKG) (1991) and
Gennaro et al.’s DKG (2006). Many protocols have been developed as a vari-
ation of these two. To use one or the other, one had to do a tradeoff between
efficiency or security. JF DKG is more efficient in computation, storage, and
communication complexity. On the other hand, Gennaro et al.’s DKG protocol

5

is more secure and resolves a known attack on the JF DKG protocol, which
prevents the public key pk from being uniformly distributed. Gennaro et al’s
scheme wasn’t efficient because it needed the participation of 2t + 1 players to
produce a signature where n is number of participants and t is threshold value.

Gennaro and Goldfeder have developed a threshold signature scheme (GG18)[1]
that enables only t + 1 to sign which was a huge improvement over the pre-
vious 2t + 1 by Gennaro et al. The GG18 was the first scalable ECDSA TSS
protocol with no trusted dealer and was considered the industry standard by
many. However, with GG18’s algorithm, the communication latency between
the MPC-shares goes up to 9 signature rounds. The authors of GG18 have since
developed a faster, more scalable version (GG20)[2] that reduces the number of
rounds to one-round signing instead of 9, while adding significant functionality:
identifiable abort and noninteractivity.

The non-interactivity property means participants don’t need to exchange in-
formation during rounds of communication and whatever information needed
to complete the protocol will be either available publicly or computed offline in
a preprocessing round. This is an interesting property as it decreases the num-
ber of communication rounds and thus makes the protocol more efficient. The
CGGMP21 protocol by Canetti et al[3] also known as MPC-CMP is considered
the newest innovation in MPC and was inspired by Gennaro and Goldfeder’s
design. It enables digital asset transactions to be signed in just 1 round, the
same as GG20.

The team behind this protocol has identified a security issue with the GG18
and GG20 protocols, showing that some information related to the private key
can be leaked and showed a mitigation method using their security model. How-
ever, the vulnerability had not yet proven to be exploitable. CGGMP21 has two
versions: the 4 round ”online” (interactive) and the 7 round ”presigning” (non-
interactive). The signing process in the first version can be split into two phases:
A first, preprocessing, phase that takes 3 rounds and can be performed before
the message is known, followed by a non-interactive step where each signa-
tory generates its own signature share, after the message to be signed becomes
known. Only the last round of the protocol requires knowledge of the message,
and the other rounds can take place in a preprocessing stage, lending to a non-
interactive threshold ECDSA protocol.

Both CGGMP21 and GG20 provide a security property called “identifiable
abort”, which essentially means that if the protocol fails to generate an output
to all honest parties, one corrupt party will be reliably identified while assuming
a dishonest majority. This property helps in detecting the identity of malicious
parties that have failed to participate in the generation of the signature in the
case of a non valid signature.

The table below lists the different MPC protocols and highlights their capa-

6

bilities in terms of efficiency (number of rounds), cold storage compatibility and
non-interactivity.

Algorithm Transaction Rounds Non-Interactivity Cold Storage
GG18 9 No No

Lindell et al. 8 No No
Doerner et al. 6 No No

GG20 1 No No
CGGMP21 4 No Yes
CGGMP21 1 Yes Yes

Another very important property that wasn’t mentioned in the table above
is the asynchronous communication. In the asynchronous model, there is no
need for all participants to be online for message delivery and communication
happens over a period of time (a bound can be set) while synchronous commu-
nication takes place in real time. We consider the synchronous model to be an
unrealistic one for a decentralized setting where nodes are distributed around
the globe. Jens Groth has written a paper describing an asynchronous non-
interactive distributed ECDSA signing scheme [4]. This protocol guarantees
output delivery which means that corrupted parties cannot prevent the honest
parties from receiving output in any case. This is true in a system where we
assume an honest majority. If a protocol guarantees output delivery, then the
parties always obtain output and cannot abort. All of the protocols in [3] and [2]
cannot guarantee output delivery while providing identifiable aborts because if a
single node in the network loses network connectivity (or crashes) for a period of
time that could be considered as an abort of the protocol. The notion of “iden-
tifiable abort” does not translate to the asynchronous communication model,
as there is no way to differentiate between a corrupt party that is unresponsive
and an honest party with a slow network connection.

1.1.2 Similar Solutions

We can divide similar technologies into two categories

1. Custodial or Non-Custodial Custodial means another party controls
customers’ private keys and commits to securely store their funds. Most
custodial solutions (centralized exchanges for example) hold funds in cold
storage (hardware wallets or hardware security modules) which are highly
secure. The alternative -non-custodial solutions - do not store customer’s
private keys, providing them full ownership and responsability of their
account. This is often managed by software such as wallets, or hardware
wallets. While this method may sound more secure than the first one as
it does not require trusting a third party with sensitive information, it
requires customers to trust themselves with that information. However,
if the customer loses access to their wallet, key management software or

7

forgets their password or recovery seed phrase, there are no options for re-
covering that account key pair. This is why many prefer to use a custodial
solution as it does not require as much responsibility on their individual,
and is typically more convenient. even if this decreases decentralization
by introducing dependencies on the custodian.

2. Network supported solutions We can think of this category as De-
centralized custody which relies on MPC technology as a building block
to manage private keys. as it does not hold users’ keys directly but can
provide validator nodes. Decentralized custody removes the single point
of failure of the private key, making theft or loss almost impossible. This
is guaranteed because private keys are divided into multiple shares and
stored with different entities in different locations (as explained previ-
ously) which makes the key secure. This is only possible if not more than
t (threshold) validator nodes are controlled by a single entity otherwise
the system will fail when that entity is hacked, malicious or ceases to exist.

Most actors in the space who use MPC technology to secure key stor-
age and allow threshold signature while providing validator nodes aren’t
transparent about how many nodes they actually control. There is an
approach to collect validators shares called dWallet (decentralized wallet)
where the user creates and stores their own share locally and every valida-
tor of the network will do the same. The validators’ shares constitute the
blockchain share which when combined with the user’s creates the user’s
private key (the key is never actually generated). Validators shares will be
used to create a partial signature which is stored on the blockchain and the
user will also generate their partial signature and queries the blockchain
signature to finally generate a valid signature and broadcast it to the tar-
get blockchain.
The problem with such an approach is that it relies heavily on the solution
provider’s blockchain network and if that last ceases to exist, users won’t
be able to access their private keys anymore nor sign transactions. The
fact that the network validators hold these shares introduces a reliability
and trust issue where users trust their blockchains will continue to exist
and no risk of ddos attack against their validators or a collusion.

Most validator nodes use Hardware Security Modules (HSM like intel
SGX) to store encrypted shares. This solution is more secure than other
private key storage methods like hot and cold crypto wallets which have
a single point of failure as every key share is stored in a different en-
clave. However Hardware solutions like Intel SGX can be dangerous in
some cases. In the computation context, data should be protected from
any type of modification or access. However, most Intel Hardware chips
have been previously found to be vulnerable to some attacks (Meltdown,
Spectre and Foreshadow). The first two attacks (Meltdown, Spectre) al-
low an attacker to access private data by misleading speculative scouts

8

into a speculative execution attack. Compared to other Intel Hardware
chips, the SGX is resilient to speculative attacks but unfortunately, it is
vulnerable to another type of attack called Foreshadow. This vulnerability
enables an attacker to create a shadow copy of the protected data into a
different unprotected location. Another reason why hardware approaches
are not privacy preserving is that data is encrypted on the client side with
the public key of the server (which is an untrusted party), instead of being
encrypted with the client public key. This system requires data within the
enclave to be decrypted before being processed. If an attacker manages
to access the enclave, it will then be easy to recover plain text data. Last
but not least, hardware enclaves introduce centralization risks and limits
availability as it becomes more expensive to be a validator of the network
and thus these solutions don’t scale.

1.1.3 Our solution

Our proposed solution - the Lisbon Account Protocol - consists of four principal
phases, which are described in more detail in the following section:

• Decentralized Key Generation, including a pre-registration phase, which
utilizes Secure Multiparty Computation (SMPC) and Verified Secret Shar-
ing (VSS)

• Threshold Signature Formation, supporting both ECDSA and BLS Sig-
natures

• Key Resharing and Rotation, for account recover, participant rotation,
and proactive security

• Public Key Encryption with Forward Secrecy, enabling on-chain data stor-
age and inter-participant communication on public channels without re-
quiring additional data or passwords for end-users

The protocol is designed to be fully decentralized, utilized in public blockchain
environments, with no additional dependencies. The protocol creates asymmet-
ric keypairs, but only returns the public address, with the private key distributed
across qualified participants as key shares. These shares are used to form thresh-
old signatures, which are verified on-chain using a smart contract.

We consider the use of private or gated networks an introduction of an ad-
ditional point of failure; should the network be unavailable or cease to exist, the
end-user is incapable of recovering shares and forming transactions. We believe
this is an unacceptable compromise in return for eliminating a single private key
point of failure. We also consider dependence on hardware security modules or
trusted execution environments an additional barrier to entry for most users, as
well as a limited factor in scaling adoption and use.

Ultimately, the protocol achieves the following characteristics:

9

• No Single Point of Failure

• No additional dependencies

• Broad compatibility and availability

• Minimized hardware risk

• Forward Secrecy

• Account Recovery and Distributed Ownership

2 Lisbon Protocol

2.1 System Context Overview

Generally speaking, the protocol requires only two components: a local light
client and access to a public, EVM-compatible blockchain. Individual partici-
pants in the protocol are expected to bring their own EOA keypair, but are free
to manage and utilize this as they wish. This keypair is their identifier, and is
utilized in account creation, communication, and signature formation.

The protocol assumes all communication between participants are public and
unsecured, and thus make use of public key encryption with forward secrecy.
These encryption keys are derivatives of participants’ EOAs, and require the
individual participant to store no additional data or passwords.

All data relevant to the use of Lisbon EOAs are safely stored on-chain, with the
same encryption employed in communication. This includes Lisbon shares, in-
formation for public verification of signatures and Lisbon Account participation,
and qualified participants in the Lisbon Account. This encrypted data can be
cached and stored locally, and can always be recovered from the on-chain record.

The majority of computation in the Lisbon Account creation and threshold
signature formation occurs locally on a participant’s device, and is performed
by the light client. The light client, developed by INTU, is available as an SDK
for developers, for integration into browser-based applications, as well as offline
executables. This includes the pre-computation that enables the protocol to
limit communication rounds and satisfy asynchronous, non-interactive require-
ments.

The corresponding smart contract system serves three purposes: coordinat-
ing communication between participants in the absence of offchain channels,
storing critical data for both the Lisbon Account and the participants, and
cryptographic validation in account use.

10

Figure 1: System Context Diagram

2.2 Distributed Key Generation (DKG)

Our key generation protocol follows the description in the Canetti paper [3].
The steps are as follow:

• Pre-registration phase During this phase, proposer Pi initiates the pro-
tocol by submitting other participants EOAs, choosing a threshold t and
a generating random message msg. The smart contract is then created
and participants who wish to be part of the vault will each sign msg and
create their Paris key pair which is stored in the smart contract (Paris is
an asymmetric encryption key scheme that we developed for the purpose
of on-chain storage of shares, will be explained further in the document).
Once each participant signs msg, and create their Paris key pair, the pro-
poser, (or anyone involved with the smart contract at this moment), can
start the key generation process.

• Sharing phase Each Pi ∈ P (where P is the set of participants) gener-
ates their secret share si ∈ Fq for Fq a finite field with q elements and
broadcasts it to all the other participants. The share is sent encrypted
using Paillier encryption which is used as a commitment scheme. In order
for other participants to verify whether Pi knows the secret exponent si
or not, Pi publicly shares a Schnorr proof of knowledge.

11

As a security measure, Canetti explains that each participant Pi must
commit to (Si, Ai) to prevent any adversary from choosing the master
public key S =

∑
j Sj as a function of the honest participants’s keys,

where Si = sig is their public key share for g a generator of the group G
of prime order q and Ai is the Schnorr proof’s first message.

Let
∏sch

bet the Schnorr PoK (Proof of Knowledge) that takes as in-
put (G, q, g, S) such that the prover has a secret input s where sg = S.
Prover sends A = αg for α ∈ Fq to verifier who then replies with another
value e ∈ Fq. Prover sends z = α+ es to verifier who checks the equality
zg = A+ eS.
The key generation protocol works as follows:

1. Every participant Pi for i ∈ {1, n} generates a secret share si such
that s = s1 +sn and set Si = sig where n is number of total
participants. Pi samples sridi ∈ {0, 1}k and computes (Ai, τ) for
Ai Schnorr PoK’s s first message. Pi samples ui ∈ {0, 1}k and set
Vi = H(ssid, i, sridi, Si, Ai, ui) where ssid = (...,G, q, g, P). Each
participant Pi brodcasts (ssid, i, Vi).

2. For every Pi such that j 6= i upon receiving (ssid, j, Vj) from all Pj ,
sends (ssid, i, sridi, Si, Ai, ui) to all participants.

3. Each Pi now verifies the following equality:

H(ssid, j, sridj , Sj , Aj , uj) = Vj

after receiving (ssid, j, sridj , Sj , Aj , uj) from Pj . Next, Pi sets srid =
⊕jsridj and computes

ψi = M(prove,

sch∏
, (ssid, i, srid), Si, si, τ)

and sends (ssid, i, ψi) to all participants Pj .

4. Last but not least, Pi upon receiving (ssid, j, ψi) from all Pj , interpret

ψj = (Âj ,) and verifies:

Âj = Aj

M(vrfy,

sch∏
, (ssid, j, srid), Sj , ψ) = 1

and outputs S =
∏
j Sj .

• Refresh phase Key refresh is the process of periodically generating and
exchanging new session share keys si and acts as a security measure in
an adaptive party corruptions situation as assumed in the Canetti paper
[3], this process is known as proactive security. In such an approach, the
lifetime of the secret is divided into epochs and secret shares are refreshed
each epoch. The scheme refreshes keys automatically and refreshment is
executed as follows:

12

1. Each participant Pi samples a Paillier modulus Ni, ring-Pedersen
parameters (si, ti). Pi then creates a secret sharing (s1i , s

2
i ,, s

n
i)

of 0 and computes

Si = (S1
i = s1i g,, S

n
i = sni g)

and broadcasts (Si, Ni, si, ti) to all participants.

2. For every Pi such that j 6= i receives (Sj , Nj , sj , tj) from every Pj ,
Pi encrypts every ski using Paillier public key Nk and obtains the
ciphertext Cki which he then sends to all participants.

3. For all Pi recipient of ciphertext Ckj from Pj , Pi refreshes his share
to a new one

s∗i = si +
∑
l

silmodq

and public keys of other participants as

S∗j = Sj +
∑
l

Sil

2.3 Threshold signature

A threshold signature scheme is a protocol used to create a cryptographic signa-
ture from a shared private key that uses a distributed set of participants. This
way, there is no single point of failure in case one of the key shares are lost or
tampered with. Threshold Signature Schemes provide a means of distributing
governorship, enabling a group of participants to decide and sign together on
one decision. The security is defined that any less than t participants learn
nothing about the shared private key and cannot produce a signature such that
t is the threshold.

Our protocol supports both BLS and ECDSA threshold signatures. This is
due to the fact that ECDSA is the most popular and widely used signature
scheme and thus by supporting it we are compatible with protocols like Bitcoin
and Ethereum which use ECDSA for generating keys and signing transactions.
We support BLS signatures because they are known to be a better solution
for doing secret sharing for multiple reasons, including the fact that threshold
ECDSA needs multiple rounds of synchronous communication, while the com-
munication in threshold BLS is asynchronous. This is a downside since more
rounds of communication means slower speed of threshold signature generation
even if ECDSA is known to be faster in key generation and signature verifica-
tion. Secondly, BLS signatures are deterministic, unlike ECDSA, which requires
a new random value for each signing. Being deterministic prevents several types
of attacks and guarantees immutability of the resulting signature. Last but not
least, BLS signatures can be aggregated and their aggregation verification is
known to be fast while individual signature verification is slow. ECDSA on the
other hand doesn’t offer a natural way to be aggregated.

13

While the concept of threshold ECDSA has been around for some time, re-
cent innovation made it more practical and usable minimize the overall number
of rounds — including the pre-signing rounds where the message is not known
yet. As a result, threshold ECDSA is increasingly being adopted as a key tool
for secure and scalable decentralized applications.

2.3.1 ECDSA Threshold signatures scheme

Our goal in the near future is to have both asynchronous and non-interactive
communication which we can achieve by following the Jens Groth paper [4] for
threshold ecdsa signature.

ECDSA threshold signing with additive key derivation

Additive key derivation is a widely used process in cryptocurrency for either
Heirarchical Deterministic Key Derivation as described in Bitcoin Improvement
Proposal 32 (BIP32) standard for deriving many subkeys from a master key
or for ECDSA threshold signing. Let s be the secret key and S be the asso-
ciated public key. The additive derivation works by deriving child keys from
the master key s by generating a random element ”tweak” ε ∈ Zq creating
a subkey s + ε. We can compute the corresponding public key as S + εg. In
BIP32’s case, the tweak is derived via a chain of hashes applied to the public key

Another variation of ECDSA signatures is presignatures that allows the val-
ues r and R = rg to be precomputed in advance of the signing phase as they
are independent from the message. We have previously mentioned several pro-
tocols that use this property in their protocols like [2] and [3]. Groth and Shoup
explain in their paper [5] that the combination of the two variations additive
key derivation and presignatures introduce an attack on ECDSA that produces
a forgery in signature in time significantly faster than O(q1/2) which is much
faster than the best known, square-root attack on plain ECDSA.
The paper presents two possible mitigations against these weaknesses:

• Re-randomized presignatures: is of the form k = k′ + δ and R =
R′ + δg such that k′ ∈ Zq and R′ = k′g for δ ∈ Zq a pseudo-randomly
generated value.

• Homogeneous key derivation: an alternative additive key derivation
mechanism with better security properties.
Goal is to derive a pair of public and private key from the master public
key (S, S′) = (sg, s′g). Giving a tweak ε ∈ Zq. The derived secret key is
s+ εs′ and derived public key S + εS′.

Our threshold ECDSA signing protocol follows the Groth design [4] which uti-
lizes re-randomized presignatures and additive key derivation. This design works

14

in an asynchronous communication model and provides a very efficient non-
interactive signing phase. Groth assumes a system with an honest majority
with f < n/3 corrupt (Byzantine) participants. We will describe the signing
protocol in both an ideal and realistic scenario. An ideal scenario means identi-
ties of corrupted participants f are known and the environment Z will only give
inputs to honest parties to generate signature. A realistic world on the other
hand assumes that both environment Z and adversary A can pass messages
back and forth freely. It also has same assumptions as in the ideal world for Z
providing inputs to honest parties who run the protocol.

• Pre-signature: The ECDSA signature is of the form (r = gk |x−axis, σ =

k−1(m+rs)) so the goal of this step is to compute gk
−1

and ks such that si
is Pi’s the secret share and s is the master secret key. In an ideal scenario,
we assume each honest party Pi is given an initialization request init only
once, generates a presignature once per presignature identifier presigID,
uses it once and also given a signature request sig which is received after
presignature request. Each party should generate a signature only once.
All honest parties receive same request in same order.

1. Upon receiving init request from Pi, if Pi is first to receive, the ideal
functionality Fecdsa runs key generation pub key S ∈ G and secret
key s, then records (init, S, s), and gives (init, i, S) to simulator L.

2. Pi receives presig request, Fecdsa runs presig generation to get (R =
gk, k), records tuple (presig, presigID,R, k) and gives to simulator
L the following:

(presig, i, presigID,R)

By applying additive key derivation and re-randomized signature to the
previous protocol, we add a public tweak ε derived as a hash of some
strings that identify signing key so it becomes s + ε instead of s and re-
randomize R with public randomness δ ∈ Zq such that r = (gδR) |x−axis
and replace k with k + δ.

• Signing: Once a message msg is known, Pi receives sig request

(sig, sigID, presigID,msg, ε)

Fecdsa fetches tuple (presig, presigID,R, k) that was recorded and runs
signature algorithm to generate (r, σ) with the value δ, records

(sig, sigID, presigID,msg, ε, r, σ, δ)

and gives to L

(sig, i, sigID, presigID,msg, ε, r, σ, δ)

Finally, Pi forwards output (output− sig, sigID, r, σ) to Z.

The assumption in the real world is that the ideal functionality F generates a
sequence of random seeds s1, s2, which are used by only honest participants
to issue a sequence of next-seed (next− seed, i, j, sj) requests to F which then
gives them to A.

15

2.3.2 BLS Threshold signatures scheme

BLS signatures BLS is a digital signature scheme that is built over the BLS
curve, specifically BLS12-381. BLS curve has the following properties that are
quite unique in signature schemes and not possible for Elliptic Curves (EC):

• Aggregatable: With BLS, it’s possible to aggregate all types of primitives
(secret keys, public keys, signatures) and the result is always another valid
primitive. This property is hard and very limited using EC.

• Uniqueness and determinism: For any given pair of public key and mes-
sage, there can only be one valid BLS signature. Adding randomness in
ECDSA however results in uncountable amounts of possible signatures for
the same public key and message.

• Shamir’s Secret Sharing: Creating secret key shares with BLS results in
valid secret keys which are then used independently to sign a transaction
and then signature is aggregated which means no need to ever compute the
master private key and have a single point of failure. Computing secret
shares with ECDSA doesn’t necessarily results in valid shares and thus
the master secret key must be computed and used for signature.

BLS Threshold Signatures Signing in threshold BLS works the same as
normal BLS signatures, but instead of using the private key you sign using the
share of the private key.
Let H : {0, 1}∗ → G be a collision-resistant hash-function.
Each participant generates a partial signature σi and a verification key

σi = H(msg)si

where si is Pi’s secret key that was generated in the key distribution phase and
msg is the message to be signed.

Signature Aggregation After t signatures have been collected, they can
be aggregated into a signature under the master private key msk. This is done
by doing the shamir reconstruction on the partial signatures.
We use Lagrange interpolation as follows:

σ =

t−1∑
i=0

σi
∏

j=0,j¬i

xi
xj − xi

=

t−1∑
i=0

(H(m).ski)
∏

j=0,j¬i

xj
xj − xi

= H(m) ·
t−1∑
i=0

ki
∏

j=0,j¬i

xj
xj − xi

= H(m) ·msk

16

By aggregating t+1 partial signatures for the message m we form the signature
σ which verifies under the public key mpk.

2.4 Key Resharing

Benefits of key resharing proactive security, participants rotation , account re-
covery and forward secrecy the execution of a resharing algorithm at various
times (both to support proactive security measures, and to support a change in
the membership of the protocol); there may also be protocols and mechanisms
to securely backup these keys.
Key resharing is a non-interactive publicly verifiable secret sharing scheme used
by Lisbon protocol to allow for managing and changing the composition of
qualified participants in a privacy preserving way. Our work is based on the
Non-interactive distributed key generation and key resharing paper [6] but we
only use their key resharing scheme while following the key generation process
from the Canetti paper [3], threshold ECDSA signature from Groth [4] and
threshold BLS from EthDKG paper [7].

We can think of the following scenarios for which key resharing is used:

1. Construct a DKG of a secret and confidential, yet verifiably distribute the
shares to multiple receivers.

2. Existing shareholders of a secret can create a new DKG of the same secret
and distribute it to a set of receivers which may or may not overlap with
the original set of shareholders. This could happen in the case where
shareholders want to add and/or delete participants to the same pool for
example.

3. Create a new secret while keeping the associated public key and hands it
to a set of receivers, which may or may not overlap with the original set
of shareholders. This can happen in the case the secret was compromised
and new secret needs to be generated for the pool of participants.

The resharing steps are as follow:

• Parent secret S is divided (in reality these shares are created by each
dealer independently and parent key isn’t generated at any time) among
n receivers (we call them dealers) into n shares S = (s1, s2,, sn)

• A set of t dealers will divide their key shares and share them with n′

receivers. So basically each dealer i divides their share si into n′ sub-
shares si = (si1, si2,, sin′) and send each to a receiver from the set
of n′ receivers with n not necessarily equals to n′.

• At the end, every receiver j will have a sub share sij from dealer i (i ∈
1, t and j ∈ 1, n′ . For example receiver 1 will have these sub-shares
s11, s21,, st′1

17

• Now every receiver is able to reconstruct their new secret share s′i from
the set they have s′i = {s11, s21,, st′1}

• The new set of receivers will be able to reconstruct the secret parent key
S only by recombining t′ shares and doing polynomial interpolation of the
shares (s′1, s

′
2,s

′
t′)

Combining either the shares si or shares s′i will result in same original key S

2.5 Public key encryption with forward secrecy

Forward Secrecy (FS), also called Perfect forward secrecy (PFS), is an encryp-
tion method that changes the encryption keys frequently as a way of adding
more security in case these keys get hacked.
The Lisbon Protocol uses FS to mitigate the damage caused by the exposure of
secret key information that was used to decrypt the shares and thus an adversary
that was able to retrieve secret keys will not manage to decrypt all past shares
from previous time epochs. We build an hierarchical identity based encryption
scheme that achieves that by allowing the dealer to keep a static long term pub-
lic key and only refresh his or her private keys periodically (each block epoch).
In addition to protecting from compromise secret keys risk, the Lisbon protocol
provides a mitigation against Chosen Ciphertext Attacks (CCA-secure) so if a
malicious dealer sends faulty ciphertexts (encrypted shares) they are detected
and not accepted in the protocol.

2.5.1 CCA-secure public-key encryption with forward secrecy

The state-of-the-art for Hierarchical identity based encryption schemes (HIBE)
show that pairing based HIBE schemes provide efficient and provably secure
identity-based encryption schemes. In particular, The first constructions of such
schemes were considered CPA-secure (Chosen Plaintext Attacks secure) but we
can easily extend them to CCA-secure schemes without sacrificing efficiency.
Therefore, the Lisbon protocol follows the same approach and uses a pairing
based HIBE scheme that was constructed by Jens Groth and is described in his
paper [6].

Construction The encryption algorithm takes as input groups G1, G2 and
GT of prime order p such that e : G1 × G2 → GT is a pairing with genera-
tors g1, g2 and e(g1, g2), a message space M = [−R..S] ⊂ Zp, group elements
f0, f1......fλ, h ∈ G2 and a tree height λ.
The first step is key generation which outputs the root public and private key
pair (y, dk) by computing y = gx1 as the public key for a random x ∈ Zp and
the dk the decryption key as follows:

dk = (gρ1 , g
x
2f

ρ
0 ,, f

ρ
λ , h

ρ)

Each leaf may be associated with a decryption key, and a holder of that decryp-
tion key can recover the plaintext. Using the decryption key for the root we

18

can derive decryption keys for all leaves The randomized derivation algorithm
takes a decryption key for epoch τ and returns a decryption key for τ + 1 this
way we can’t decrypt messages of previous epochs. The randomized encryption
algorithm then given the public key y and the plaintext m with the associated
epoch for a leaf ρ1.......ρλ ∈ {0, 1}λ picks randomly r, s ∈ Zp and returns the
ciphertext c where

c =

(
yrgm1 , g

r
1, g

s
1,

(
f0

λ∏
i=1

fτii

)r
hs

)

The decryption algorithm is deterministic and takes as input c and a decryption
key dkτ1......τλ for a leaf with the tree path τ1......τλ and outputs the plaintext
m as:

M = e(C, g2) · e(R, b−1) · e(a, Z) · e(S, e)−1

such that
c = (C,R, S, Z) ∈ G3

1 ×G2

and
dkτ1......τλ = (τ1.....τλ, a, b, e) ∈ {0, 1}λ ×G1 ×G2

2

The algorithm does a brute force search for m such that M = e(g1, g2)m.

3 Threat Model

In this section we identify the different security weaknesses and attack vectors
facing the Lisbon protocol and the proposed solution to mitigate each of them.
Some of these weaknesses have already been mitigated by implementing their
countermeasures and others are still a work in progress and we plan to address
them in the near future.

3.1 Malicious behavior

We can imagine two scenarios where either the dealer is malicious or another
participant of the protocol. In case of a malicious dealer, the dealing phase
reveals whether everybody received a correct key share or not but what they
don’t know is whether the dealer is honest or not so we cannot trust a single
entity generating these shares and therefore we need a distributed key genera-
tion protocol. So the setup that we have is multiple dealers and each of these
dealers provide a dealing and we get security if at least one of these dealers is
honest, we can actually tolerate quite few bad dealers

In the case where a participant is malicious, the scenario is in the key gen-
eration process, participants receive their secret shares encrypted by the dealer
and verify their integrity using the Feldman’s VSS protocol. If the share is
proven to be invalid, the participant Pj issues a dispute claim in order to dis-
qualify the dealer (share issuer) as explained in the dispute phase.

19

However, Pj cannot verify the integrity of the other shares of the rest of partic-
ipants. In the case where a participant Pw sends no message of verifying their
share? Pw could be disconnected or malicious by accepting an invalid share sent
by dealer and not reporting it.

Solution: Publicly verifiable secret sharing: In this case, the dealer en-
crypts shares using the participants’ public keys and generates a non-interactive
zero knowledge proof which guarantees that what shares have been encrypted
in an actual valid secret share that corresponds to the public key material. This
way every participant knowing the public encryption key is able to verify the
integrity of other shares. If one or more verifications fails the dealer fails and
the protocol is aborted.
A scheme with such a verifiability property is also used to verify dealing integrity
to prevent malicious behavior by the dealer. Feldman developed the first effi-
cient and non-interactive VSS protocol which we use. He used a commitment
with computational security and unconditional share integrity to achieve it.
However, since the adversary can access the public key, unconditional security
for the secret is impossible.
The Lisbon protocol provides this property as it’s using asymmetric key encryp-
tion to encrypt shares and thus shares are publicly verifiable by everyone.

3.2 Man In the Middle

An attacker can record and modify communications between two participants
of Diffie Hellman key exchange by impersonating one of the two participants.
While Forward Secrecy (FS) protects against the decryption of such communi-
cation, it cannot prevent it from being collected if an attacker positions themself
in the middle. In principle, obtaining and keeping such records leaves the door
open for them to be deciphered in the future. As a result, the Lisbon Account
Protocol employs as a countermeasure to Man-in-the-middle attacks ECDHE
(Elliptic Curve Diffie Hellman Ephemeral) with ECDSA signature.

This means participant A signs the public elements they send to participant
B with their private key during the key exchange so that B knows for sure the
elements they received come from A, and not some malicious actor listening to
the communication by verifying the signature against A’s public key.

3.3 Key compromise

The usage of static long term keys to encrypt shares introduces the risk of
key-compromise which could reveal information about the key shares. An at-
tacker instantly has access to all encrypted shares from previous sessions that
were transmitted between a dealer and participant using a particular key and
be able to decrypt them. This type of attack is the most common one since
cryptographic keys are directly exposed.

20

Solution: Forward Secrecy: Using ephemeral keys during key exchange
protects session keys even if a long-term key is compromised which guarantees
forward secrecy. Combining distributed trust with ephemeral keys protects a
system against key compromise. Here, the system’s time is divided into phases.
At the start of each phase, participants’ secret shares are renewed such that new
shares are independent of previous ones, except for the fact that they interpolate
to the same secret key. With an assumption that the adversary may corrupt at
most t participants in each phase, the system now becomes secure
liveliness which we address with async

4 Conclusion

The Lisbon Account Protocol provides a practical means of generating and uti-
lizing distributed externally-owned accounts (dEOAs) for use on decentralized
networks in real-world conditions. The resulting distributed externally-owned
accounts (dEOAs) provide end-users with several desirable benefits without
compromising on core values such as self-custody, decentralization, and inter-
operability. These benefits include:

• Eliminating private key single-point-of-failure risk through distributed
ownership

• Account recovery and proactive security through key resharing

• Broad usability through both ECDSA and BLS Signature Schemes

The Lisbon Account Protocol consists of four core components, including:

• Decentralized Key Generation, through Secure Multiparty Computation
(SMPC) and Verified Secret Sharing (VSS)

• Threshold Signature Formation, for both BLS and ECDSA Signature
Schemes

• Key Resharing, and consequently, rotation, for dynamic ownership and
security

• Public Key Encryption with Forward-Secrecy for on-chain data storage

We consider the protocol practical for real-world applications as it:

• Enjoys broad compatibility with decentralized networks by providing ECDSA-
based EOA public addresses with off-chain signature formation, as well as
BLS keypairs for next-generation networks

• Is independent of any third-party dependencies, such as MPC systems or
validator networks, hardware such as HSMs, APIs, Tokens, or proprietary
communications channels

21

• Achieves Public-key Encryption with Forward Secrecy without requiring
end-users to actively store any additional data or passwords

• Is non-interactive and asynchronous, assumes public and unsecured chan-
nels of communication, and therefore is better suited for decentralized
network environments

The protocol provides the necessary infrastructure to better meet human expec-
tations in regards to accounts: No single point-of-failure, forgiveness for human
error, and more natural ownership structures, all while providing a high degree of
usability without prerequisite understanding of cryptographic or technical con-
cepts. We envision applications ranging from single-user accounts with recovery
for decentralized applications and games to complex decentralized autonomous
organizations and businesses, with sophisticated governance, operational poli-
cies, and business logic.

In designing the protocol, we have addressed many safety and security concerns
common in Web3, both cryptographic and practical, such as forward secrecy,
denial of service, man-in-the-middle, and active malicious adversaries. The con-
siderations in making the protocol practical allow developers to confidently build
on the protocol and corresponding infrastructure, and empower them to focus
on additional functionality and programmability.

The result is an externally-owned account that is better fit for human end-users,
functionally shielding them from the risks and complexities of decentralized net-
works, while providing a higher degree of usability and safety. Ultimately, we
expect the protocol to enable developers to better meet the expectations of
mainstream users, fueling the adoption of decentralized networks as the next
generation of the internet - Web3.

References

[1] Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ecdsa
with fast trustless setup. Cryptology ePrint Archive, Paper 2019/114, 2019.
https://eprint.iacr.org/2019/114.

[2] Rosario Gennaro and Steven Goldfeder. One round threshold ecdsa with
identifiable abort. 2020. https://eprint.iacr.org/2020/540.

[3] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and
Udi Peled. Uc non-interactive, proactive, threshold ecdsa with identifiable
aborts. Cryptology ePrint Archive, Paper 2021/060, 2021. https://eprint.
iacr.org/2021/060.

[4] Jens Groth and Victor Shoup. Design and analysis of a distributed ECDSA
signing service, 2022.

22

https://eprint.iacr.org/2019/114
https://eprint.iacr.org/2020/540
https://eprint.iacr.org/2021/060
https://eprint.iacr.org/2021/060

[5] Jens Groth and Victor Shoup. On the security of ecdsa with additive key
derivation and presignatures. Cryptology ePrint Archive, Paper 2021/1330,
2021. https://eprint.iacr.org/2021/1330.

[6] Jens Groth. Non-interactive distributed key generation and key resharing.
IACR Cryptol. ePrint Arch., page 339, 2021.

[7] Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar R. Weippl.
ETHDKG: distributed key generation with ethereum smart contracts. IACR
Cryptol. ePrint Arch., page 985, 2019.

5 Appendix

In this section, we will introduce all the cryptographic concepts used in our
protocol.

Groups

A binary operation ∗ on a set G is a mapping from G×G to G, which associates
to elements x and y of G a third element x ∗ y of G.

Definition: A group (G, ∗) consists of a setG together with a binary operation
∗ for which the following properties are satisfied:

• Associativity: (x ∗ y) ∗ z = x ∗ (y ∗ z), ∀x, y, z ∈ G

• Neutral element: ∃! e ∈ G, e ∗ x = x = x ∗ e, ∀x ∈ G

• Inverse element: ∀x ∈ G, ∃! x′ ∈ G, x ∗ x′ = e = x′ ∗ x where e is the
neutral element of G.

A group G is Abelian (or commutative) if: x ∗ y = y ∗ x, ∀x, y ∈ G

Cyclic groups:

Definition: A group G is said to be cyclic, with generator x, if every element
of G is of the form xn for some integer n.

Fields

A field F is a set with two binary operations + and ∗ that satisfies the following
field axioms:

• Closure under addition: ∀x, y ∈ F, x+ y ∈ F

• Closure under multiplication: ∀x, y ∈ F, x ∗ y ∈ F

• Additive inverses: ∀x ∈ F, y ∈ F such that x+ y = 0

23

https://eprint.iacr.org/2021/1330

• Multiplication inverses: ∀x ∈ F such that x 6= 0, ∃ y ∈ F such that
x ∗ y = 1, y is called the multiplicative inverse of x and is denoted x−1 or
1

x

• The distributive law: ∀x, y, z ∈ F, x ∗ (y + z) = x ∗ y + x ∗ z

Finite Fields:

A finite field is a field Fq with a finite number of elements. The order of a finite
field

|Fq| = q = pk

for some integer k ≥ 1 and p prime equals the number of elements in the field.

Elliptic curves

We use pairing friendly elliptic curves defined over very large finite fields |Fp| ≈
2256. In the following we will explain what is an elliptic curve, pairings and
elliptic curves over finite fields.

Definition An Elliptic curve E is a mathematical object defined over a field
F and generally expressed in the following Weierstrass form:

y2 = x3 + ax+ b

for some a, b ∈ Fq where (x, y) are called affine coordinates.

Elliptic curves over finite fields

We will mainly focus on elliptic curves over finite fields since they are the ones
used for cryptographic applications. An elliptic curve over a finite field Fq is an
abelian group G with a finite number of points n such that n = |G| (order of
the group G).

The discrete logarithm problem

The security of many cryptographic techniques depends on the intractability of
the discrete logarithm problem.

Definition: Let G be a multiplicative group. The discrete logarithm problem
(DLP) is: Given g, h ∈ G to find a, if it exists, such that h = ga.

24

Elliptic Curve Discrete Logarithm Problem (ECDLP)

Let E be an elliptic curve of the Weierstrass form defined over a finite field Fq.
Let S and T be two points in E(Fq). Find an integer m such that:

T = mS

The fastest method to solve the ECDLP problem in E(Fq) is the Pollard Rho

method which has exponential complexity O(
√
|G|). In order for this algorithm

to be exponential, we need to define elliptic curves over very large fields |Fp| ≈
2256.

Pairings

Pairing based-cryptography is used in many cryptographic applications like sig-
nature schemes, key agreement, zero knowledge...etc. For example, pairings are
used to create efficient circuit-based zero knowledge proofs.

Definition A pairing e is a bilinear map , defined as:

e : G1 ×G2 → GT

Such that G1, G2 and GT are abelian groups. The bilinear property means that:

e(P + P ′, Q) = e(P,Q) + e(P ′, Q)

e(P,Q+Q′) = e(P,Q) + e(P,Q′)

for P, P ′ ∈ G1 and Q,Q′ ∈ G2 and a, b ∈ Z

Montgomery curve

Definition: A Montgomery curve over Fq is an elliptic curve defined as

E(A,B) : By2 = x(x2 +Ax+ 1)

where A and B are parameters in Fq satisfying B 6= 0 and A2 6= 4.

Curve25519 Curve25519 is a Montgomery curve providing 128 bits of
security defined as:

y2 = x3 + ax2 + x

over prime field p where: b = 1. The curve is birationally equivalent to a twisted
Edwards curve used in the Ed25519 signature scheme.

Barreto-Lynn-Scott curves (BLS curves) A BLS curve is a pairing
over BLS curves that constructs optimal Ate pairings. BLS12-381 is optimal
for zk-SNARKs at the 128-bit security level and is implemented by the zcash
team. Bls12-381 has an embedded Jubjub curve.

25

Signature schemes

We will give the definition of the following signature schemes: ECDSA and BLS.

• ECDSA works over a general elliptic curve and is used in Bitcoin and
Ethereum.

• BLS signature scheme uses a bilinear pairing for verification, and signa-
tures are elements of an elliptic curve group, it is already integrated into
major blockchain projects such as Ethereum, Algorand, Chia and Dfinity.

ECDSA: Elliptic Curve Signatures

The (Elliptic Curve Digital Signature Algorithm) is a cryptographically secure
digital signature scheme, based on the elliptic-curve cryptography. ECDSA is
defined over a group G of prime order q, G is defined as the group of points on
an elliptic curve and g ∈ G is a generator for G. Given a secret key s ∈ Zq and
a message msg ∈ {0, 1}∗, the signing algorithm runs as follows:

• Compute the hash m of the message msg as m = hash(msg) ∈ Zq (we
can use SHA256).

• Choose a random number k ∈ Z∗q and compute a point R = kg

• Select the x-coordinate of R as r = R.x

• Compute the signature σ = k−1 × (m+ rs)

• The signature consists of the pair (r, σ)

BLS signatures

The BLS signature scheme is a cryptographic digital signature scheme based on
bilinear pairing operations. In the BLS signature scheme, a signer generates a
public and private key pair (x, gx), where the public key gx is a point on an
elliptic curve and the private key x is an integer.

To sign a message m, the signer hashes the message h = H(m) to a point
on the curve and then raises the point to the power of the private key. The
resulting point is the signature

σ = hx

To verify the signature, the verifier computes a pairing e operation between gx

and h and compares it to another pairing operation between the signature σ
and a fixed point on the curve. If the two pairings match, the signature is valid.

e(σ, g) = e(H(m), gx)

The BLS signature scheme is efficient and has several desirable properties, in-
cluding being resistant to certain types of attacks such as existential forgery and
key-only attacks.

26

Diffie-Hellman Key Exchange

The Diffie-Hellman key exchange is a cryptographic protocol that allows two
parties Alice and Bob to generate a shared secret over an insecure communica-
tion channel. The protocol involves both parties agreeing on a public domain
parameters and each generating their own private key. They then use their pri-
vate keys and the public parameters to compute a shared secret, which can be
used for secure communication. The security of the Diffie-Hellman key exchange
is based on the computational difficulty of the discrete logarithm problem.
Let’s outline the process step by step:

1. Alice and Bob agree on a prime modulus p and a generator g such that
g ∈ Z∗p is a generator of a group of a prime field Z∗p.

2. Alice selects a private random number a such that 1 < a < p − 1 and
calculates l = ga mod p sending the result publicly to Bob;

3. Then Bob selects his private random number b such that 1 < b < p − 1
and calculates m = gb mod p sending the result publicly to Alice;

4. Alice takes Bob’s public result m and raises it to the power of her private
number obtaining ma mod p;

5. Bob takes Alice’s public result l and raises it to the power of his private
number obtaining lb mod p;

6. Finally the shared key s is

s = mamodp = (gb)amodp = (ga)bmodp = lbmodp

Lagrange basis and polynomial interpolation

Polynomial interpolation is a process where a given set of points (xi, yi), i ∈ [n]
allows us to construct a polynomial f(x) that passes through all of them. We
will assume that xi 6= xj for all distinct i, j pairs, otherwise there is a repeated
pair or it is not possible to construct the polynomial as it would have to take
two different values at the same x-point.

Notice that for a set of 2 points, we can find a line that crosses both of them,
for a set of 3 points, a parabola, and in general, for a set of n points there is a
polynomial of degree n− 1 that contains all of them.
The Lagrange interpolation consists of 2 steps:

1. Construct a Lagrange basis: This is a set of n polynomials of degree
n− 1 that take the value 0 at all points of the set except one, where their
value is Expressed in a formula:

Li(x) =

{
0, if x = xj , j ∈ [n], j 6= i

1, if x = xi

27

The polynomials Li can be constructed in the following way:

Li(x) =
∏

0≤j<n, j 6=i

x− xj
xi − xj

Notice that this product has n−1 terms, and therefore results in a degree
n− 1 polynomial.

2. Scale and sum the polynomials of the basis.

f(x) =

n−1∑
i=0

yi · Li(x)

The properties of the Lagrange basis now allow us to scale each polynomial to
its target value by multiplying by yi and then add up all the terms.
The important observation we can extract from the Lagrange interpolation is
that given a fixed set of points x1, . . . , xn (an evaluation domain) we can rep-
resent any polynomial of degree d < n by its evaluations f(xi) at d + 1 points
in the set. As it turns out, this representation is much more convenient than
the usual coefficient representation as it provides a very simple and fast way
of computing sums and multiplication of polynomials. However, the coefficient
form is still useful for evaluating the polynomial at points outside the evaluation
domain.
Switching between these two forms of representation is very useful. The coef-
ficient form is preferred when the polynomial must be evaluated at a random
point (outside of the evaluation domain). The evaluation form is better suited
for operations between polynomials such as addition, multiplication and exact
quotients. The algorithm that allows us to efficiently switch between repre-
sentations is the Fast Fourier Transform (FFT). This is an efficient algorithm
for the more general discrete Fourier Transform (DFT). It has a complexity of
O(n · log(n)) with n being the degree of the polynomial.

Zero Knowledge Proof systems

Before we start talking about zero knowledge proof systems, let’s first define
what a proof system is: A proof system is a protocol by which one party (prover)
wants to convince another party (verifier) that a given statement is true.

Zero knowledge proof system: In zero-knowledge proofs, the prover con-
vinces the verifier about the truthfulness of the statement without revealing any
information about the statement itself.

Properties A zero-knowledge proof needs to fulfill each of the following prop-
erties to be fully described:

• Completeness: An honest prover is always able to convince the verifier
of the truthfulness of their claim.

28

• Soundness:If the prover’s claim is false (malicious prover), the verifier is
not convinced.

• Zero knowledge:The proof should not reveal any information to the
verifier beyond the truthfulness of the given claim.

Types of Zero knowledge proofs

There are two types of zero knowledge proofs (interactive and non interactive
ones) Interactive zero-knowledge proof systems were first introduced in 1985 by
Goldwasser, Micali and Rackoff. Non-interactive schemes were introduced later
on by Blum et al. The main difference between both schemes is that interactive
proofs require interaction between both parties which means both have to be
online in order to do so; this can be seen as inconvenient, especially for modern
cryptography applications, while non-interactive proofs need a shared setup
preprocessing phase instead. The shared setup phase will allow the participating
parties to know which statement is being proved and what protocol is being used.

Interactive Zero Knowledge Proofs

A prover P has a secret s and correctly responds to challenges to convince a
verifier V it has knowledge of s using rounds of interaction between the two
parties.

Non interactive zero knowledge proofs (NIZK)

Non-interactive zero-knowledge proofs, also known as NIZKs are another type
of zero-knowledge proof which require no interaction between the prover and
the verifier. In order to transform interactive proofs into NIZK proofs, cryptog-
raphers used the Fiat-Shamir heuristic hash function. This hash function allows
one to compute the verifier challenges and offer very efficient NIZK arguments
that are secure in the random oracle model. More recent works have started
using bilinear groups to improve efficiency.

The two major types of NIZK proofs are zkSNARKs and zkSTARKs; zk-
SNARKs are based on elliptic curve cryptography and need a trusted setup
phase, whereas zkSTARKs rely on hash functions and do not have any trusted
setup. We will focus on zkSNARKs since PLONK is in this category. zkSNARKs
stands for zero-knowledge Succinct Non-interactive ARguments of Knowledge.

• - Succinct: proof length needs to be short

• Non-interactive: needs to be verifiable in a short amount of time

• ARKs: need to show that we know an input (witness) which yields to a
certain computation.

29

zkSNARKs cannot be applied to any computational problem directly; rather,
you have to convert the problem into the right “form” for the problem to operate
on.

30

	Introduction
	State of the art
	Technology
	Similar Solutions
	Our solution

	Lisbon Protocol
	System Context Overview
	Distributed Key Generation (DKG)
	Threshold signature
	ECDSA Threshold signatures scheme
	BLS Threshold signatures scheme

	Key Resharing
	Public key encryption with forward secrecy
	CCA-secure public-key encryption with forward secrecy

	Threat Model
	Malicious behavior
	Man In the Middle
	Key compromise

	Conclusion
	Appendix

